On eigenmodes, stiffness, and sensitivity of atomic force microscope cantilevers in air versus liquids

نویسندگان

  • Daniel Kiracofe
  • Arvind Raman
چکیده

The effect of hydrodynamic loading on the eigenmode shapes, modal stiffnesses, and optical lever sensitivities of atomic force microscope AFM microcantilevers is investigated by measuring the vibrations of such microcantilevers in air and water using a scanning laser Doppler vibrometer. It is found that for rectangular tipless microcantilevers, the measured fundamental and higher eigenmodes and their equivalent stiffnesses are nearly identical in air and in water. However, for microcantilevers with a tip mass or for picket shaped cantilevers, there is a marked difference in the second and higher eigenmode shapes between air and water that leads to a large decrease in their modal stiffness in water as compared to air as well as a decrease in their optical lever sensitivity. These results are explained in terms of hydrodynamic interactions of microcantilevers with nonuniform mass distribution. The results clearly demonstrate that tip mass and hydrodynamic loading must be taken into account in stiffness calibration and optical lever sensitivity calibration while using higher-order eigenmodes in dynamic AFM. © 2010 American Institute of Physics. doi:10.1063/1.3284206

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compositional contrast of biological materials in liquids using the momentary excitation of higher eigenmodes in dynamic atomic force microscopy.

Atomic Force microscope (AFM) cantilevers commonly used for imaging soft biological samples in liquids experience a momentary excitation of the higher eigenmodes at each tap. This transient response is very sensitive to the local sample elasticity under gentle imaging conditions because the higher eigenmode time period is comparable to the tip-sample contact time. By mapping the momentary excit...

متن کامل

GDQEM Analysis for Free Vibration of V-shaped Atomic Force Microscope Cantilevers

V-shaped and triangular cantilevers are widely employed in atomic force microscope (AFM) imaging techniques due to their stability. For the design of vibration control systems of AFM cantilevers which utilize patched piezo actuators, obtaining an accurate system model is indispensable prior to acquiring the information related to natural modes. A general differential quadrature element method (...

متن کامل

Size-dependent on vibration and flexural sensitivity of atomic force microscope

In this paper, the free vibration behaviors and flexural sensitivity of atomic force microscope cantilevers with small-scale effects are investigated. To study the small-scale effects on natural frequencies and flexural sensitivity, the consistent couple stress theory is applied. In this theory, the couple stress is assumed skew-symmetric. Unlike the classical beam theory, the new model contain...

متن کامل

Harnessing the damping properties of materials for high-speed atomic force microscopy.

The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnit...

متن کامل

Calibration of higher eigenmode spring constants of atomic force microscope cantilevers.

Standard spring constant calibration methods are compared when applied to higher eigenmodes of cantilevers used in dynamic atomic force microscopy (dAFM). Analysis shows that Sader's original method (Sader et al 1999 Rev. Sci. Instrum. 70 3967-9), which relies on a priori knowledge of the eigenmode shape, is poorly suited for the calibration of higher eigenmodes. On the other hand, the thermal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010